Geometrical interpretation of fMRI-guided MEG/EEG inverse estimates.

نویسندگان

  • Seppo P Ahlfors
  • Gregory V Simpson
چکیده

Magneto- and electroencephalography (MEG/EEG) and functional magnetic resonance imaging (fMRI) provide complementary information about the functional organization of the human brain. An important advantage of MEG/EEG is the millisecond time resolution in detecting electrical activity in the cerebral cortex. The interpretation of MEG/EEG signals, however, is limited by the difficulty of determining the spatial distribution of the neural activity. Functional MRI can help in the MEG/EEG source analysis by suggesting likely locations of activity. We present a geometric interpretation of fMRI-guided inverse solutions in which the MEG/EEG source estimate minimizes a distance to a subspace defined by the fMRI data. In this subspace regularization (SSR) approach, the fMRI bias does not assume preferred amplitudes for MEG/EEG sources, only locations. Characteristic dependence of the source estimates on the regularization parameters is illustrated with simulations. When the fMRI locations match the true MEG/EEG source locations, they serve to bias the underdetermined MEG/EEG inverse solution toward the fMRI loci. Importantly, when the fMRI loci do not match the true MEG/EEG loci, the solution is insensitive to those fMRI loci.

منابع مشابه

Combined MEG and fMRI model

An integrated model for magnetoencephalography (MEG) and functional Magnetic Resonance Imaging (fMRI) is proposed. In the proposed model, MEG and fMRI outputs are related to the corresponding aspects of neural activities in a voxel. Post synaptic potentials (PSPs) and action potentials (APs) are two main signals generated by neural activities. In the model, both of MEG and fMRI are related to t...

متن کامل

Automatic fMRI-guided MEG multidipole localization for visual responses.

Previously, we introduced the use of individual cortical location and orientation constraints in the spatiotemporal Bayesian dipole analysis setting proposed by Jun et al. ([2005]; Neuroimage 28:84-98). However, the model's performance was limited by slow convergence and multimodality of the numerically estimated posterior distribution. In this paper, we present an intuitive way to exploit func...

متن کامل

Multimodal integration: constraining MEG localization with EEG and fMRI

I review recent methodological developments for multimodal integration of MEG, EEG and fMRI data within a Parametric Empirical Bayesian framework [1]. More specifically, I describe two ways to incorporate multimodal data during distributed MEG/EEG source reconstruction under linear Gaussian assumptions: 1) the simultaneous inversion of EEG and MEG data using a common generative model [2], and 2...

متن کامل

Spatiotemporal imaging of human brain activity using functional MRI constrained magnetoencephalography data: Monte Carlo simulations.

The goal of our research is to develop an experimental and analytical framework for spatiotemporal imaging of human brain function. Preliminary studies suggest that noninvasive spatiotemporal maps of cerebral activity can be produced by combining the high spatial resolution (millimeters) of functional MRI (fMRI) with the high temporal resolution (milliseconds) of electroencephalography (EEG) an...

متن کامل

A Parametric Empirical Bayesian framework for fMRI-constrained MEG/EEG source reconstruction

We describe an asymmetric approach to fMRI and MEG/EEG fusion in which fMRI data are treated as empirical priors on electromagnetic sources, such that their influence depends on the MEG/EEG data, by virtue of maximizing the model evidence. This is important if the causes of the MEG/EEG signals differ from those of the fMRI signal. Furthermore, each suprathreshold fMRI cluster is treated as a se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • NeuroImage

دوره 22 1  شماره 

صفحات  -

تاریخ انتشار 2004